1800

Structure and Ordering in Metal Cyanide Lattices: the Use of Doubly Labelled Cyanide (¹³C–¹⁵N) to Simplify the ¹³C MAS NMR Spectrum[†]

R. D. Curtis, C. I. Ratcliffe^b and J. A. Ripmeester*^b

^a Institute for Biological Sciences and ^b Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario K1A OR9, Canada

The relatively simple procedure of incorporating doubly labelled ${}^{13}C{-}^{15}N$ into metal cyanide lattices gives a significant simplification of the MAS NMR spectrum, yielding readily interpretable structural information, and the first example of ${}^{13}C{-}^{63,65}Cu$ J coupling constants in the solid state, for NMe₄Cu(I)Zn(CN)₄.

The difficulty in distinguishing C from N by X-ray diffraction has proved to be a serious problem in the study of metal cyanide lattices.¹⁻³ Recent ¹¹³Cd NMR studies^{4,5} of several cadmium cyanides have shown that ordered lattice space groups chosen on the basis of the refinement of X-ray data were incorrect.

Metal cyanides form an extremely extensive and versatile group of compounds, many with potential as lattice framework hosts. There are few which have a suitable spin 1/2 metal nucleus at the lattice vertices which may serve as NMR probes to check for local order, such as ¹¹³Cd in the cadmium cyanides. Hoskins *et al.*¹ recently reported a mixed copperzinc cyanide, NMe₄Cu(I)Zn(CN)₄, and proposed Cu–C–N– Zn ordering, although neither the C and N nor the Cu and Zn atoms could be distinguished explicitly. An initial attempt to use ¹³C solid-state NMR spectroscopy as an independent method for examining the cyanide ordering resulted in a relatively weak cyanide ¹³C signal [Fig. 1(*a*)] which was not easily interpretable. Recognizing that the spectral complexity has its origin in the coupling of ¹³C to the quadrupolar ¹⁴N nucleus, and perhaps also to ^{63,65}Cu, we decided to incorpor-

† Issued as NRCC No. 33320.

ate doubly labelled ¹³C–¹⁵N cyanide into NMe₄Cu(I)Zn(CN)₄ at the 25% level. The resulting magic angle spinning ¹³C NMR spectrum [Fig. 1(*b*, *c*)] of the enriched sample shows considerable fine structure which yields significant new information by inspection. The spinning sideband manifold consists of quartets which can be assigned to ¹³C–^{63,65}Cu *J* coupling, the first example of its kind. Close inspection of an individual quartet shows partially resolved fine structure on the outer lines, indicative of the slightly different coupling constants between ¹³C and ⁶³Cu or ⁶⁵Cu; ¹*J*(¹³C, ⁶³Cu) = 324 and ¹*J*(¹³C, ⁶⁵Cu) = 347 Hz. This observation immediately confirms the Cu–C–N– Zn ordering scheme proposed in the structural study.¹

The ¹³C NMR spectrum obtained for the same enriched material under static conditions also shows interesting fine structure which results from dipolar couplings to ^{63,65}Cu and ¹⁵N, in addition to the *J* coupling and the ¹³C chemical shift anisotropy, thus confirming the Cu–C–N–Zn ordering scheme. The ¹³C static NMR spectrum can be calculated assuming Cu–C–N to be an A–M–X spin system and summing powder pattern contributions from the (*m*Cu,*n*N), m = -3/2 to +3/2, n = -1/2 to +1/2, spin states.^{6,7} The calculations are simplified considerably by the colinearity of the two dipolar and the chemical shifts tensors. The ¹⁵N NMR spectra obtained under static and spinning conditions offer an

Fig. 1 ¹³C CPMAS NMR spectra of NMe₄Cu(I)Zn(CN)₄: (*a*) sample with natural isotopic distribution; (*b*) sample enriched to 25% ¹³C–¹⁵N cyanide; (*c*) detail of centreband quartet. The line at about 55 ppm is due to the NMe₄+ carbons.

Table 1 NMF	results for	doubly	labelled	NMe₄Cı	I(I)Zn	$(CN)_4$
-------------	-------------	--------	----------	--------	--------	----------

Nucleus	Chemical shift anisotropy (ppm)						
	δ_{\perp}	δ	δ_{iso}	<i>R</i> (C,N)/ Hz	J(C,N)/ Hz	<i>R</i> (Cu,C)/ Hz	J(Cu,C)/ Hz
¹⁵ N ¹³ C	324 275	-105 -78	181 157	-1788 -1788	-18 -18	1004 ^a 1075	324 ^{<i>a</i>} 347

^a ⁶³Cu values top, ⁶⁵Cu values bottom.

Fig. 2 (a) ¹³C NMR powder spectrum of NMe₄Cu(I)Zn(CN)₄ enriched in doubly labelled cyanide; (b) spectrum calculated with parameters listed in Table 1. The line at about 55 ppm is due to the NMe₄⁺ carbons.

Fig. 3 65 Cu MAS spectra of (*a*) NMe₄Cu(I)Zn(CN)₄; (*b*) as (*a*) but sample enriched in doubly labelled cyanide; (*c*) simulated spectrum assuming a statistical distribution of *J* couplings to 0, 1, 2 and 3 13 C nuclei appropriate to a 13 C incorporation level of 25%.

couplings, are listed in Table 1. The dipolar coupling constants R can be converted into internuclear distances r_{am} according to eqn. (1), yielding

independent means of evaluating the 13C-15N dipolar coupling

and the ¹³C-¹⁵N J coupling, 18 Hz, as well as the ¹⁵N chemical

shift tensor. A calculated ¹³C powder pattern is shown in Fig.

2, and inspection shows it to be an excellent match for the

experimental ${}^{13}C$ NMR spectrum. The principal components of the ${}^{13}C$ and ${}^{15}N$ chemical shift tensors, the dipolar and J

$$R = (\mu_0/4\pi) \hbar/2\pi) \gamma_a \gamma_m < r_{am}^{-3} >$$
(1)

values of 1.999 and 1.197 Å for Cu–C and C–N. These are considerably longer than the X-ray diffraction values of 1.877 and 1.081 Å respectively. It is important to remember that X-ray diffraction and NMR do not measure exactly the same

quantity, and that both X-ray and NMR values will be modified considerably by the presence of motional averaging. In fact the unusual thermal ellipsoids of the C and N atoms obtained from the analysis of the X-ray diffraction results are indicative of some motion of the CN groups. Also, there is an unknown contribution from anisotropic J coupling, so that the effective dipolar coupling is $R_{\text{eff}} = S(R - \Delta J/3)$ with $\Delta J = J_{\parallel} - J_{\perp}$ and S is an order parameter which depends on the motion. A more detailed analysis will depend on ¹³C and ¹⁵N static NMR spectra obtained at low temperatures so as to reduce the effect of motional averaging.

Finally, we present a 65 Cu NMR spectrum for both the unlabelled and doubly labelled samples of NMe₄-Cu(I)Zn(CN)₄ (Fig. 3). The NMR spectrum of the labelled material shows superimposed resonances of 65 Cu attached to 0, 1, 2 and 3 13 C nuclei, with corresponding multiplets arising from the *J* coupling. The relative intensities of the multiplets follow a statistical distribution appropriate for 25% labelling. The relatively sharp 65 Cu spectrum, owing to the presence of Cu on exact tetrahedral lattice sites, makes the natural abundance material suitable as a chemical shift and cross-polarization standard for solid-state Cu NMR studies.

Incorporation of ¹³C, ¹⁵N doubly enriched cyanide has a tremendous potential for elucidating local order and structure

in metal cyanides. The incorporation is usually relatively simple, and at enrichment levels of 10-25% the natural abundance ¹⁴N-coupled ¹³C NMR signals become essentially invisible.

Received, 22nd July 1992; Com. 2/03904D

References

- 1 B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1990, 112, 1546.
- 2 B. F. Abrahams, B. F. Hoskins and R. Robson, J. Chem. Soc., Chem. Commun., 1990, 60.
- 3 B. F. Abrahams, B. F. Hoskins, J. Liu and R. Robson, J. Am. Chem. Soc., 1991, 113, 3045.
- 4 S. Nishikiori, C. I. Ratcliffe and J. A. Ripmeester, *Can. J. Chem.*, 1990, **68**, 2770.
- 5 S. Nishikiori, C. I. Ratcliffe and J. A. Ripmeester, J. Chem. Soc., Chem. Commun., 1991, 735.
- 6 W. P. Power and R. E. Wasylishen, Ann. Rep. NMR Spectrosc., 1991, 23, 1.
- 7 R. D. Curtis, G. H. Penner, W. P. Power and R. E. Wasylishen, *J. Phys. Chem.*, 1990, **94**, 4000.